PASSAGE PLANNING IN THE ERA OF BIG DATA

Captain Bernardo Obando Marine Pilot – Hay Point (Australia) Vice President, AMPI

2do Congreso de Lecciones Aprendidas Cartagena - Colombia

Contents:

AMPI
Big Data
Pilotage and Big Data
Reconceptualising pilotage
Case Study: Hay Point

AMPI: Who are we?

- Represent Marine Pilots in Australia
- Member of IMPA
- Continuous Professional Development Program
- Mentoring Program
- Peer Support Network
- Organise conferences and workshops
- Produce safe passage magazine
- Formulate Policy papers
- Lobbying regulators / politicians on behalf of pilots

What is Big Data?

Big data refers to massive, complex data sets that are rapidly generated and transmitted from a wide variety of sources. Big data sets can be structured, semi-structured and unstructured, and they are frequently analyzed to discover applicable patterns and insights about user and machine activity. Big Data includes texts, audios, videos, and real-time information.

Big Data attributes:

- **1.Volume:** The huge amounts of data being stored.
- **2.Velocity:** The lightning speed at which data streams must be processed and analyzed.
- **3.Variety:** The different sources and forms from which data is collected, such as numbers, text, video, images, audio and text.

Big Data in pilotage

SYSTEMS APPROACH RESULTING IN:

MAXIMUM SITUATIONAL AWARENNESS ENHANCED MONITORING

No longer anonymous - unaccountable

Big Data in pilotage

MAXIMUM SITUATIONAL AWARENNESS

LEVEL 1: PERCEPTION OF THE ELEMENTS IN THE ENVIRONMENT LEVEL 2: COMPREHENSION OF THE CURRENT SITUATION LEVEL 3: PROJECTION OF FUTURE STATUS

Enhanced monitoring: accidents and big data

Source: Australian Hydrographic Service (annotated by ATSB)

Source: Australian Hydrographic Service (annotated by ATSB)

Recent accidents and big data

La tatia tatia tatia ta

With the same as a set

1.1.1

Big Data in pilotage:

How is big data applied to passage plans?

- Maximum situational awareness for pilot and bridge team
- Enables the planning and execution to be monitored in real time by stakeholders (shipping companies, terminals, pilotage companies and authorities)
- Ensures the pilotage act is conducted within established parameters ensuring safety, accountability, optimization, and overall improving safety, efficiency and profitability.
- Invaluable for debriefing, training and conducting incident investigation

Reconceptualisation

Marine Pilotage

Big Data in pilotage: Passage planning

The ideal passage plan route:

Identifies critical elements	Vessel characteristics Under keel clearance Environmental conditions (wind, tide, visibility) Regulatory compliance Contingency planning
Determines safety parameters	UKC Speed Wind and tide parameters Pilotage parameters (ETAs, passing) Trim
Sharing of pilotage plans	Building a shared mental model Electronic MPX
Other considerations	Ship specifics Efficiency (Commercial) considerations

What is a port provided passage plan?

Hay Point - Australia

Case Study : Hay Point, Australia heightened SA

APPROVED Plan 68321.7 for NSU KEYSTONE

Calculated: 11Dec2022 0705 (3 hour forecast)

Transit Description: DBCT4 STBD SIDE TO (CHANNEL) Sailing Draft: 17.95 m

Passage commencement window: 11Dec2022 1017 to 11Dec2022 1323

Commencement time: 11Dec2022 1030

Stage II Window: No Window

Vess	Vessel IMO: 9641883 Type: BULK CARRIER		Data		Environmental Conditions										
IMO:	9641883	Draft F:	18.00 m		TIDES										
Type: Bl	JLK CARRIER	Draft M:	18.00 m '	HalfTide	1.89 m (-0.01m) 11/0700	DWRB	Sea 0.36 m, 3.7 s								
MMSI:	431977000	Draft A:	18.00 m	Beacon2Tide	1.88 m (-0.03m) 11/0700	11/0700	Swell 0.07 m, 7.7 s								
Beam:	50.05 m	KG:	13.63 m			BMA Miros	Sea 0.40 m, 4.0 s								
LBP:	291.40 m	GMs:	-			11/0700	Swell 0.08 m, 11.8 s								
LOA:	299.90 m	FSC:	-												
DWT:	207,684 t	GMf:	7.56 m												
Flag:	JAPAN	Displ:	231,911 t												
Summer Draft:	18.27 m	Water dens:1	.025 t/m3												

Window Open: 11Dec2022 1017

					AVE	RAG	E			FAST													
UKC	Limits		UKC	Time	Lo	c (n	m)	UKC	Limits		UKC 1	Time	Lo	c (ni	m)	UKC	Limits		UKC 1	Time	Lo	c (ni	m)
BC	0.25		0.71	1019	1	0.08		BC	0.25		0.71	1019		0.08		BC	0.25		0.71	1019		0.08	
MM	0.90		0.90	1019		80.0		MM	0.90		0.90	1019		0.08		MM	0.90		0.90	1019		80.0	
WP	ETA (AEST)	SOC (kn	Dept	th Tide	BC (m)	MM (m)	GR (m)	WP	ETA (AEST)	SO((kn	Depti (m)	n Tide (m)	BC (m)	MM (m)	GR (m)	WP	ETA (AEST)	500 (kn	Depth) (m)	Tide (m)	BC (m)	MM (m)	GR (m)
DBCT4	1017	1.0	14.7	7 4.53	1.18	1.38	1.25	DBCT4	1017	1.0	14.77	4.53	1.18	1.38	1.25	DBCT4	1017	1.0	14.77	4.53	1.18	1.38	1.25
Bcn1	1111	6.5	14.88	5.16	1.60	1.96	1.99	Bcn1	1105	7.5	14.88	5.10	1.43	1.80	1.93	Bcn1	1101	8.5	14.88	5.05	1.25	1.62	1.88
Bcn4	1132	6.5	14.9	7 5.33	1.81	2.18	2.26	Bcn4	1123	7.5	14.97	5.27	1.63	1.99	2.19	Bcn4	1117	8.5	14.97	5.21	1.42	1.79	2.13
Bcn2	1147	6.5	15.06	5 5.42	1.98	2.43	2.43	Bcn2	1136	7.5	15.06	5.36	1.79	2.24	2.36	Bcn2	1128	8.5	15.06	5.30	1.59	2.04	2.31
Sea	1155	6.5	15.00	5.46	1.96	2.42	2.41	Sea	1143	7.5	15.00	5.40	1.78	2.24	2.35	Sea	1134	8.5	15.00	5.34	1.57	2.04	2.29

Window Close: 11Dec2022 1323

		S	LOW							AV	ERAG	E			FAST								
UKC	Limits		UKC	Time	Lo	c (n	m)	UKC	Limits		UKC	Time	Lo	c (ni	m)	UKC	Limits	L	IKC	Time	ne Loc (nm		m)
BC	0.25		0.43	1459		7.96		BC	0.25		0.46	1448		7.96		BC	0.25	(0.42	1439		7.96	
MM	0.90		0.91	1459		7.96		MM	0,90		0.94	1448		7.96		MM	0.90		0.90	1439		7.96	
WP	ETA (AEST)	SO((kn	G Dep) (m	th Tide	BC (m)	MM (m)	GR (m)	WP	ETA (AEST)	SO((kn	Deption (m)	h Tide (m)	BC (m)	MM (m)	GR (m)	WP	ETA (AEST)	SOG (kn)	Dept (m)	h Tide (m)	BC (m)	MM (m)	GR (m)
DBCT4	1323	1.0	14.7	7 5.32	1.96	2.16	2.04	DBCT4	1323	1.0	14.77	5.32	1.96	2.16	2.04	DBCT4	1323	1.0	14.77	5.32	1.96	2.16	2.04
Bcn1	1417	6.5	14.8	8 4.75	1.16	1.53	1.58	Bcn1	1411	7.5	14.88	4.83	1.12	1.50	1.65	Bcn1	1407	8.5	14.88	4.88	1.04	1.42	1.71
Bcn4	1438	6.5	14.9	7 4.49	0.93	1.30	1.41	Bcn4	1429	7.5	14.97	4.60	0.91	1.29	1.52	Bcn4	1423	8.5	14.97	4.69	0.85	1.23	1,61
Bcn2	1453	6.5	15.0	6 4.29	0.80	1.27	1.30	Bcn2	1442	7.5	15.06	4.44	0.82	1.28	1.44	Bcn2	1434	8.5	15.06	4.55	0.78	1.24	1.55
Sea	1501	6.5	15.0	0 4.19	0.63	1.11	1.13	Sea	1449	7.5	15.00	4.35	0.67	1.15	1.29	Sea	1440	8.5	15.00	4.47	0.64	1.12	1.41

Passage Commencement: 11Dec2022 1030

		S	LOW							AVI	RAG	E			FAST								
UKC	Limits	1	UKC	Time	Lo	c (ni	m)	UKC	Limits		UKC	Time	Lo	c (n	m)	UKC	Limits	l	JKC	Time	ne Loc (m)
BC	0.25		0.88	1032		0.08		BC	0.25		0.88	1032		0.08		BC	0.25		88.0	1032		0.08	
MM	0.90		1.07	1032	1	0.08		MM	0.90		1.07	1032		0.08		MM	0.90		1.07	1032	e	0.08	
WP	ETA (AEST)	SO (kn	G Dept	th Tide) (m)	BC (m)	MM (m)	GR (m)	WP	ETA (AEST)	SOC (kn	Depti) (m)	h Tide (m)	BC (m)	MM (m)	GR (m)	WP	ETA (AEST)	SOG (kn)	Dept (m)	h Tide (m)	BC (m)	MM (m)	GR (m)
DBCT4	1030	1.0	14.7	7 4.70	1.35	1.54	1.42	DBCT4	1030	1.0	14.77	4.70	1.35	1.54	1.42	DBCT4	1030	1.0	14.77	4,70	1.35	1.54	1.42
Bcn1	1124	6.5	14.8	8 5.27	1.71	2.08	2.10	Bcn1	1118	7.5	14.88	5.22	1.55	1.92	2.05	Bcn1	1114	8.5	14.88	5.18	1.38	1.75	2.01
Bcn4	1145	6.5	14.9	7 5.42	1.89	2.26	2.34	Bcn4	1136	7.5	14.97	5.36	1.72	2.09	2.28	Bcn4	1130	8.5	14.97	5.32	1.53	1.89	2.24
Bcn2	1200	6.5	15.0	6 5.48	2.03	2.49	2.49	Bcn2	1149	7.5	15.06	5.44	1.87	2.32	2.44	Bcn2	1141	8.5	15.06	5.39	1.68	2.13	2.40
Sea	1208	6.5	15.0	0 5.51	2.00	2.47	2.46	Sea	1156	7.5	15.00	5.47	1.84	2.31	2.42	Sea	1147	8.5	15.00	5.42	1.65	2.12	2.37

Case Study : Hay Point, Australia Heightened SA

- 1. Day visual
- 2. Night visual
- 3. Navigational aids (buoys physical and virtual)
- 4. Radar
- 5. ECDIS
- 6. PPU

Case Study : Hay Point, Australia Heightened SA

WP 4

Case Study : Hay Point, Australia Heightened SA

Case Study : Hay Point, Australia Heightened SA –augmented reality

Case Study : Hay Point, Australia EM: the regulator (MSQ)

Case Study : Hay Point, Australia EM: the shipowner

Case Study : Hay Point, Australia EM: third parties

Challenges

Route Exchange

- RTZ Format IEC 61174:2015
- S100 / S421 route exchange format
- Cyber Security
- Performance standards & manufacturer differences

Connectivity

Legal issues

Proprietary Data

Acknowledgements

Ravi Nijjer Principal Consultant Marine Consultancy Group Pty Ltd Tel & Fax: + 61 (0) 3 9830 0649 Mob: +61 (0) 419 565 860 Email: ravi.nijjer@marcon.com.au Captain Ravi Nijjer Captain Ricky Rouse - AMPI Captain Damian Laughlin – PPSP

AMPI PORTS AND PILOTAGE CONFERENCE 2023

MAXIMISING SITUATIONAL AWARENESS

Crown Towers Hotel Perth, Western Australia

1-5 October 2023

01.10.2023 - 05.10.2023 Perth, Australia